Subscriu-te a la newsletter mensual AQUÍ

Forward Vision: Predictive Studies

Com et podem ajudar?

Deixa'ns un missatge i el nostre equip de professionals contactarà amb tu

Contactar

Predictius analytics employs statistical, mathematical, and machine learning techniques to predict future events or trends.

Predictive analytics is applied to anticipate consumer behavior, market trends, customer preferences, and other relevant factors.

Which Areas Benefit from Predictive Analytics?

  1. Customer segmentation: Divideixes customers en groups basades en commons atributs i predicts en què les companyies del grup responen a diferents estratègies de màrqueting.
  2. Sales forecasting: Usos historical sals data per predict futures productes o serveis de sales, aiding in production planning and marketing strategies.
  3. Trend analysis: Identifiquen patterns and trends in data to understand how certain factors impact the market and how they might evolve in the future.
  4. Price optimization: Assists in determining ideal prices per a productes o serveis basats en dades analysis i avaluacions de les primes changes could affect sals.
  5. Churn prediction: Identifies customers likely to abandonar product or service, enabling companyies to take preventive measures.
  6. Marketing personalization: Uses customer behavior and preference data per oferir personalitzades content and offers, increasing conversion probability.
  7. Opportunity detection: Identifies emerging market nínxols or areas with potential growing demand, influencing strategic decision-making.

Techniques Used in Predictive Analytics

Predictius analytics relies en comprehensive collection i analysis of relevant data, often involving advanced data mining and statistical modeling techniques.

Diverses techniques i approaches s'utilitzen mitjançant predictives analytics per a futures events or trends. Aquestes techniques es basen en analyzing historical data and identifying useful patterns and relationships. Some common techniques include:

  1. Regressió: Models the relationship between dependent variable and one or more independent variables to predict numerical values.
  2. Decision trees: Structures que divideix data into branxes basades en diferents atributs i condicions, utilitzades per seqüencials decisions i prediccions.
  3. Logistic regression: Used when the dependent variable és categorical, predicting probabilities and classifying events into categories.
  4. Time series models: Used per predicar future values basades en pastura temporal patterns, suïtable per forecasting time-dependent events like monthly sals or economic data.
  5. Artificial neural networks: Deep learning techniques mimicking human brain neural networks, applied to complex prediction and pattern recognition tasks.
  6. Support vector machines (SVM): Classification algorithms seeking optimal hyperplanes to separate different data classes, employed for classification problems.
  7. Clústering: Groups similar data into clusters, aiding in identifying market segments and hidden patterns.
  8. Time series analysis: Involves analyzing sequential data over time to identify seasonal patterns, trends, and cycles.
  9. Machine learning models: Algorithms like Random Forest, Gradient Boosting, and altres handle complex datasets and learn nonlinear relationships.
  10. Bayesian models: Incorpora't prior information with observed data for more informed predictions, adjusting forecasts a new data is obtained.

Les característiques de la tecnologia depenen del tipus de data, prediction problema, and pattern nature, Often, testing multi techniques i parametre ajustaments que necessiten per a tenir un fit pro the specific problem.

Amb Hamilton Global, ens dedicarà a utilitzar noves tecnologies per a analitzar informació, proveint els insights que necessiten per a la seva empresa. Shall we talk?

ca
Suscríbete a nuestra Newsletter mensual

Subscriu-te a la nostra Newsletter mensual

Amb el resum mensual de les notícies més rellevants del sector

Prefereixo rebre Newsletter a

Sector laboral

Política de Privadesa

Gràcies per subscriure't a la nostra newsletter!